QQ登录

只需一步,快速开始

用微信登录

扫一扫,用微信登录

手机号码,快捷登录

查看: 3790|回复: 0

纳米技术的应用及其前景

[复制链接]
发表于 2010-9-9 17:58:52 | 显示全部楼层 |阅读模式
陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用。但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使其应用受到了较大的限制。随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有象金属一样的柔韧性和可加工性。英国材料学家Cahn指出纳米陶瓷是解决陶瓷脆性的战略途径。
  所谓纳米陶瓷,是指显微结构中的物相具有纳米级尺度的陶瓷材料,也就是说晶粒尺寸、晶界宽度、第二相分布、缺陷尺寸等都是在纳米量级的水平上。要制备纳米陶瓷,这就需要解决:粉体尺寸形貌和粒径分布的控制,团聚体的控制和分散。块体形态、缺陷、粗糙度以及成分的控制。
  Gleiter指出,如果多晶陶瓷是由大小为几个纳米的晶粒组成,则能够在低温下变为延性的,能够发生100%的范性形变。并且发现,纳米TiO2陶瓷材料在室温下具有优良的韧性,在180℃经受弯曲而不产生裂纹。许多专家认为,如能解决单相纳米陶瓷的烧结过程中抑制晶粒长大的技术问题,从而控制陶瓷晶粒尺寸在50nm以下的纳米陶瓷,则它将具有的高硬度、高韧性、低温超塑性、易加工等传统陶瓷无与伦比的优点。上海硅酸盐研究所在纳米陶瓷的制备方面起步较早,他们研究发现,纳米3Y-TZP陶瓷(100nm左右)在经室温循环拉伸试验后,在纳米3Y-TZP样品的断口区域发生了局部超塑性形变,形变量高达380%,并从断口侧面观察到了大量通常出现在金属断口的滑移线。 Tatsuki等人对制得的Al2O3-SiC纳米复相陶瓷进行拉伸蠕变实验,结果发现伴随晶界的滑移,Al2O3晶界处的纳米SiC粒子发生旋转并嵌入Al2O3晶粒之中,从而增强了晶界滑动的阻力,也即提高了Al2O3-SiC纳米复相陶瓷的蠕变能力。
  虽然纳米陶瓷还有许多关键技术需要解决,但其优良的室温和高温力学性能、抗弯强度、断裂韧性,使其在切削刀具、轴承、汽车发动机部件等诸多方面都有广泛的应用,并在许多超高温、强腐蚀等苛刻的环境下起着其他材料不可替代的作用,具有广阔的应用前景。

  纳米技术在微电子学上的应用

  纳米电子学是纳米技术的重要组成部分,其主要思想是基于纳米粒子的量子效应来设计并制备纳米量子器件,它包括纳米有序(无序)阵列体系、纳米微粒与微孔固体组装体系、纳米超结构组装体系。纳米电子学的最终目标是将集成电路进一步减小,研制出由单原子或单分子构成的在室温能使用的各种器件。
  目前,利用纳米电子学已经研制成功各种纳米器件。单电子晶体管,红、绿、蓝三基色可调谐的纳米发光二极管以及利用纳米丝、巨磁阻效应制成的超微磁场探测器已经问世。并且,具有奇特性能的碳纳米管的研制成功,为纳米电子学的发展起到了关键的作用。
  碳纳米管是由石墨碳原子层卷曲而成,径向尺层控制在100nm以下。电子在碳纳米管的运动在径向上受到限制,表现出典型的量子限制效应,而在轴向上则不受任何限制。以碳纳米管为模子来制备一维半导体量子材料,并不是凭空设想,清华大学的范守善教授利用碳纳米管,将气相反应限制在纳米管内进行,从而生长出半导体纳米线。他们将Si-SiO2混合粉体置于石英管中的坩埚底部,加热并通入N2。SiO2气体与N2在碳纳米管中反应生长出Si3N4纳米线,其径向尺寸为4~40nm。另外,在1997年,他们还制备出了GaN纳米线。1998年该科研组与美国斯坦福大学合作,在国际上首次实现硅衬底上碳纳米管阵列的自组织生长,它将大大推进碳纳米管在场发射平面显示方面的应用。其独特的电学性能使碳纳米管可用于大规模集成电路,超导线材等领域。
  早在1989年,IBM公司的科学家就已经利用隧道扫描显微镜上的探针,成功地移动了氙原子,并利用它拼成了IBM三个字母。日本的Hitachi公司成功研制出单个电子晶体管,它通过控制单个电子运动状态完成特定功能,即一个电子就是一个具有多功能的器件。另外,日本的NEC研究所已经拥有制作100nm以下的精细量子线结构技术,并在GaAs衬底上,成功制作了具有开关功能的量子点阵列。目前,美国已研制成功尺寸只有4nm具有开关特性的纳米器件,由激光驱动,并且开、关速度很快。
  美国威斯康星大学已制造出可容纳单个电子的量子点。在一个针尖上可容纳这样的量子点几十亿个。利用量子点可制成体积小、耗能少的单电子器件,在微电子和光电子领域将获得广泛应用。此外,若能将几十亿个量子点连结起来,每个量子点的功能相当于大脑中的神经细胞,再结合MEMS(微电子机械系统)方法,它将为研制智能型微型电脑带来希望。
  纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理信息的能力,实现信息采集和处理能力的革命性突破,纳米电子学将成为对世纪信息时代的核心。

  纳米技术在生物工程上的应用
  众所周知,分子是保持物质化学性质不变的最小单位。生物分子是很好的信息处理材料,每一个生物大分子本身就是一个微型处理器,分子在运动过程中以可预测方式进行状态变化,其原理类似于计算机的逻辑开关,利用该特性并结合纳米技术,可以此来设计量子计算机。美国南加州大学的Adelman博士等应用基于DNA分子计算技术的生物实验方法,有效地解决了目前计算机无法解决的问题—“哈密顿路径问题”,使人们对生物材料的信息处理功能和生物分子的计算技术有了进一步的认识。
  虽然分子计算机目前只是处于理想阶段,但科学家已经考虑应用几种生物分子制造计算机的组件,其中细菌视紫红质最具前景。该生物材料具有特异的热、光、化学物理特性和很好的稳定性,并且,其奇特的光学循环特性可用于储存信息,从而起到代替当今计算机信息处理和信息存储的作用。在整个光循环过程中,细菌视紫红质经历几种不同的中间体过程,伴随相应的物质结构变化。Birge等研究了细菌视紫红质分子潜在的并行处理机制和用作三维存储器的潜能。通过调谐激光束,将信息并行地写入细菌视紫红质立方体,并从立方体中读取信息,并且细菌视紫红质的三维存储器可提供比二维光学存储器大得多的存储空间。
  到目前为止,还没有出现商品化的分子计算机组件。科学家们认为:要想提高集成度,制造微型计算机,关键在于寻找具有开关功能的微型器件。美国锡拉丘兹大学已经利用细菌视紫红质蛋白质制作出了光导“与”门,利用发光门制成蛋白质存储器。此外,他们还利用细菌视紫红质蛋白质研制模拟人脑联想能力的中心网络和联想式存储装置。
  纳米计算机的问世,将会使当今的信息时代发生质的飞跃。它将突破传统极限,使单位体积物质的储存和信息处理的能力提高上百万倍,从而实现电子学上的又一次革命。

纳米技术在光电领域的应用
  纳米技术的发展,使微电子和光电子的结合更加紧密,在光电信息传输、存贮、处理、运算和显示等方面,使光电器件的性能大大提高。将纳米技术用于现有雷达信息处理上,可使其能力提高10倍至几百倍,甚至可以将超高分辨率纳米孔径雷达放到卫星上进行高精度的对地侦察。但是要获取高分辨率图像,就必需先进的数字信息处理技术。科学家们发现,将光调制器和光探测器结合在一起的量子阱自电光效应器件,将为实现光学高速数学运算提供可能。
  美国桑迪亚国家实验室的Paul等发现:纳米激光器的微小尺寸可以使光子被限制在少数几个状态上,而低音廊效应则使光子受到约束,直到所产生的光波累积起足够多的能量后透过此结构。其结果是激光器达到极高的工作效率,而能量阈则很低。纳米激光器实际上是一根弯曲成极薄面包圈的形状的光子导线,实验发现,纳米激光器的大小和形状能够有效控制它发射出的光子的量子行为,从而影响激光器的工作。研究还发现,纳米激光器工作时只需约100微安的电流。最近科学家们把光子导线缩小到只有五分之一立方微米体积内。在这一尺度上,此结构的光子状态数少于10个,接近了无能量运行所要求的条件,但是光子的数目还没有减少到这样的极限上。最近,麻省理工学院的研究人员把被激发的钡原子一个一个地送入激光器中,每个原子发射一个有用的光子,其效率之高,令人惊讶。
  除了能提高效率以外,无能量阈纳米激光器的运行还可以得出速度极快的激光器。由于只需要极少的能量就可以发射激光,这类装置可以实现瞬时开关。已经有一些激光器能够以快于每秒钟200亿次的速度开关,适合用于光纤通信。由于纳米技术的迅速发展,这种无能量阈纳米激光器的实现将指日可待。

  纳米技术在化工领域的应用

  纳米粒子作为光催化剂,有着许多优点。首先是粒径小,比表面积大,光催化效率高。另外,纳米粒子生成的电子、空穴在到达表面之前,大部分不会重新结合。因此,电子、空穴能够到达表面的数量多,则化学反应活性高。其次,纳米粒子分散在介质中往往具有透明性,容易运用光学手段和方法来观察界面间的电荷转移、质子转移、半导体能级结构与表面态密度的影响。目前,工业上利用纳米二氧化钛-三氧化二铁作光催化剂,用于废水处理(含SO32-或 Cr2O72-体系),已经取得了很好的效果。
  用沉淀溶出法制备出的粒径约30~60nm的白色球状钛酸锌粉体,比表面积大,化学活性高,用它作吸附脱硫剂,较固相烧结法制备的钛酸锌粉体效果明显提高。
  纳米静电屏蔽材料,是纳米技术的另一重要应用。以往的静电屏蔽材料一般都是由树脂掺加碳黑喷涂而成,但性能并不是特别理想。为了改善静电屏蔽材料的性能,日本松下公司研制出具有良好静电屏蔽的纳米涂料。利用具有半导体特性的纳米氧化物粒子如Fe2O3、TiO2、ZnO等做成涂料,由于具有较高的导电特性,因而能起到静电屏蔽作用。另外,氧化物纳米微粒的颜色各种各样,因而可以通过复合控制静电屏蔽涂料的颜色,这种纳米静电屏蔽涂料不但有很好的静电屏蔽特性,而且也克服了碳黑静电屏蔽涂料只有单一颜色的单调性。
  另外,如将纳米TiO2粉体按一定比例加入到化妆品中,则可以有效地遮蔽紫外线。一般认为,其体系中只需含纳米二氧化钛0.5~1%,即可充分屏蔽紫外线。目前,日本等国已有部分纳米二氧化钛的化妆品问世。紫外线不仅能使肉类食品自动氧化而变色,而且还会破坏食品中的维生素和芳香化合物,从而降低食品的营养价值。如用添加0.1~0.5%的纳米二氧化钛制成的透明塑料包装材料包装食品,既可以防止紫外线对食品的破坏作用,还可以使食品保持新鲜。将金属纳米粒子掺杂到化纤制或纸张中,可以大大降低静电作用。利用纳米微粒构成的海绵体状的轻烧结体,可用于气体同位素、混合稀有气体及有机化合物等的分离和浓缩,用于电池电极、化学成分探测器及作为高效率的热交换隔板材料等。纳米微粒还可用作导电涂料,用作印刷油墨,制作固体润滑剂等。
  用化学共沉淀法得到ZnCO3包覆Ti(OH)4粒子,在一定温度下预焙解后,溶去绝大部分包覆的ZnO粉体,利用体系中少量的ZnTiO3(ZnTiO3与TiO2(R)的晶体结构类似)促进了TiO2从锐钛型向金红石型的转化,制得粒径约20~60nm的金红石型二氧化钛粉体。用紫外分光光度计进行了光学性能测试,结果发现此粉体对240~400nm的紫外线有较强的吸收,吸收率高达92%以上,其吸收性能远远高于普通TiO2粉体。另外,由于纳米粉体的量子尺寸效应和体积效应,导致纳米粒子的光谱特性出现“兰移”或“红移”现象。在制备超细铝酸盐基长余辉发光材料时,用软化学法合成出的超细发光粉体的发射光谱的主峰位置,较固相机械混合烧结法制备的发光粉体兰移了12nm。余辉衰减曲线表明,该法合成出的发光粉体,其余辉衰减速度相对固相法合成出的发光粉体要快得多,这些都是由于粉体粒子大幅度减小所致。
  研究人员还发现,可以利用纳米碳管其独特的孔状结构,大的比表面(每克纳米碳管的表面积高达几百平方米)、较高的机械强度做成纳米反应器,该反应器能够使化学反应局限于一个很小的范围内进行。在纳米反应器中,反应物在分子水平上有一定的取向和有序排列,但同时限制了反应物分子和反应中间体的运动。这种取向、排列和限制作用将影响和决定反应的方向和速度。科学家们利用纳米尺度的分子筛作反应器,在烯烃的光敏氧化作用中,将底物分子置于反应器的孔腔中,敏化剂在溶液中,这样就只生成单重态的氧化产物。用金属醇化合物和羧酸反应,可合成具有一定孔径的大环化合物。利用嵌段和接技共聚物会形成微相分离,可形成不同的“纳米结构”作为纳米反应器。

  纳米技术在医学上的应用

  随着纳米技术的发展,在医学上该技术也开始崭露头脚。研究人员发现,生物体内的RNA蛋白质复合体,其线度在15~20nm之间,并且生物体内的多种病毒,也是纳米粒子。10nm以下的粒子比血液中的红血球还要小,因而可以在血管中自由流动。如果将超微粒子注入到血液中,输送到人体的各个部位,作为监测和诊断疾病的手段。科研人员已经成功利用纳米SiO2微粒进行了细胞分离,用金的纳米粒子进行定位病变治疗,以减少副作用等。另外,利用纳米颗粒作为载体的病毒诱导物已经取得了突破性进展,现在已用于临床动物实验,估计不久的将来即可服务于人类。
  研究纳米技术在生命医学上的应用,可以在纳米尺度上了解生物大分子的精细结构及其与功能的关系,获取生命信息。科学家们设想利用纳米技术制造出分子机器人,在血液中循环,对身体各部位进行检测、诊断,并实施特殊治疗,疏通脑血管中的血栓,清除心脏动脉脂肪沉积物,甚至可以用其吞噬病毒,杀死癌细胞。这样,在不久的将来,被视为当今疑难病症的爱滋病、高血压、癌症等都将迎刃而解,从而将使医学研究发生一次革命。

  纳米技术在分子组装方面的应用

  纳米技术的发展,大致经历了以下几个发展阶段:在实验室探索用各种手段制备各种纳米微粒,合成块体。研究评估表征的方法,并探索纳米材料不同于常规材料的特殊性能。利用纳米材料已挖掘出来的奇特的物理、化学和力学性能,设计纳米复合材料。目前主要是进行纳米组装体系、人工组装合成纳米结构材料的研究。虽然已经取得了许多重要成果,但纳米级微粒的尺寸大小及均匀程度的控制仍然是一大难关。如何合成具有特定尺寸,并且粒度均匀分布无团聚的纳米材料,一直是科研工作者努力解决的问题。目前,纳米技术深入到了对单原子的操纵,通过利用软化学与主客体模板化学,超分子化学相结合的技术,正在成为组装与剪裁,实现分子手术的主要手段。科学家们设想能够设计出一种在纳米量级上尺寸一定的模型,使纳米颗粒能在该模型内生成并稳定存在,则可以控制纳米粒子的尺寸大小并防止团聚的发生。
  1992年,Kresge等首次采用介孔氧化硅材料为基,利用液晶模板技术,在纳米尺度上实现有机/无机离子的自组装反应。其特点是孔道大小均匀,孔径可以在5~10nm内连续可调,具有很高的比表面积和较好的热稳定性。使其在分子催化、吸附与分离等过程,展示了广阔的应用前景。同时,这类材料在较大范围内可连续调节其纳米孔道结构,可以作为纳米粒子的微型反应容器。
  Wagner等利用四硫富瓦烯的独特的氧化还原能力,通过自组装方式合成了具有电荷传递功能的配合物分子梭,具有开关功能。Attard等利用液晶作为稳定的预组织模板,利用表面活性剂对水解缩聚反应过程和溶胶表面进行控制,合成了六角液晶状微孔SiO2材料。Schmid等利用特定的配位体,成功地制备出均匀分布的由55个Au原子组成的金纳米粒子。据理论预测,如果以这种金纳米粒子做成分子器件,其分子开关的密度将会比一般半导体提高105~106倍。
  1996年,IBM公司利用分子组装技术,研制出了世界上最小的“纳米算盘”,该算盘的算珠由球状的C60分子构成。美国佐治亚理工学院的研究人员利用纳米碳管制成了一种崭新的“纳米秤”,能够称出一个石墨微粒的重量,并预言该秤可以用来称取病毒的重量。
  李彦等以六方液晶为模板合成了CdS纳米线,该纳米线生长在表面活性剂分子形成的六方堆积的空隙水相内,呈平行排列,直径约1~5nm。利用有机表面活性剂作为几何构型模板剂,通过有机/无机离子间的静电作用,在分子水平上进行自组装合成,并形成规则的纳米异质复合结构,是实现对材料进行裁减的有效途径。

  纳米技术在其它方面的应用

  利用先进的纳米技术,在不久的将来,可制成含有纳米电脑的可人—机对话并具有自我复制能力的纳米装置,它能在几秒钟内完成数十亿个操作动作。在军事方面,利用昆虫作平台,把分子机器人植入昆虫的神经系统中控制昆虫飞向敌方收集情报,使目标丧失功能。
  利用纳米技术还可制成各种分子传感器和探测器。利用纳米羟基磷酸钙为原料,可制作人的牙齿、关节等仿生纳米材料。将药物储存在碳纳米管中,并通过一定的机制来激发药剂的释放,则可控药剂有希望变为现实。另外,还可利用碳纳米管来制作储氢材料,用作燃料汽车的燃料“储备箱”。利用纳米颗粒膜的巨磁阻效应研制高灵敏度的磁传感器;利用具有强红外吸收能力的纳米复合体系来制备红外隐身材料,都是很具有应用前景的技术开发领域
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册   扫一扫,用微信登录

本版积分规则

QQ|玻璃钢复合材料商城|联系我们|Archiver|手机版|小黑屋| FRP玻璃钢复合材料论坛 蜀ICP备10204395号-1

GMT+8, 2024-5-3 01:38 , Processed in 1.107314 second(s), 19 queries .

© 2015-2016

快速回复 返回顶部 返回列表